Plastizität

Aus ESOCAETWIKIPLUS

Wechseln zu: Navigation, Suche

engl: plasticity          Kategorie: Level 2 Material Mechanik


Plastizitaet-1.jpg

Allgemeine Informationen hierzu finden Sie zum Beispiel bei wikipedia:Plastische_Verformung

Inhaltsverzeichnis

Simulation

Plastizität ist eine Materialnichtlinearität in der Strukturmechanik, bei der irreversible Anteile enthalten sind. Ein Zyklus einer Belastung und anschließenden Entlastung ergibt also bleibende (irreversible) Verformungen.

Die Nichtlinearität des Materialverhaltens wird durch eine Funktion des Stoffgesetzes - also des Zusammenhanges zwischen Dehnungen und Spannungen - festgelegt.

Für die numerische Simulation werden zahlreiche Effekte von realem Material idealisiert und durch Annahmen abgedeckt. Die Gesamtheit dieser Annahmen wird das "Materialgesetz" genannt.

Es ist üblich, für folgende Materialien die angegebenen Materialgesetze zu verwenden:

Beispiel

Ein Beispiel für das Materialgesetz "Bilinear, kinematische Verfestigung" ist hier als Bildfolge gezeigt. In der Abbildung oben ist eine Materialprobe gezeigt, an deren Enden zunächst eine Zugkraft, danach eine Druckkraft wirkt. Es ist angedeutet, welche Längenänderungen dabei auftreten. In dem Diagramm darunter sind die Dehnungen und Spannungen skizziert. Es wird erkennbar, dass das Verhältnis zwischen Dehnungen und Spannungen nicht linear ist (Nichtlinearität), dass bei einer Lastfolge sich eine bleibende Dehnung einstellt (Plastizität) und dass bei einer Rückverformung das Material fester wirkt (Verfestigung).

Beispiel

Weitere Erläuterungen finden Sie in dem Beispiel für Plastizität und Hill-Anisotropie.

Tips und Tricks

Die Dateneingabe für ein Materialverhalten wie rechts in den Skizzen gezeigt erfolgt meistens über

Die numerische Lösung erfordert, dass der Elastizitätsmodul und die Steigung des ersten Kurvenabschnittes - definiert über das erste Wertepaar von Spannung und Dehnung - zusammen passen (Elastizitätsmodul > Steigung oder Elastizitätsmodul = Steigung). Wenn diese Werte auch noch von den Temperaturen abhängig sind, kann dies zu Fehlermeldungen des FEM-Programms führen, die schwer interpretierbar sind. Beispiel: für den Elastizitätsmodul sind 10 Werte für verschiedene Temperaturen gegeben. Für die Spannungs-Dehnungs-Funktion sind Verläufe für 4 verschiedene Temperaturen gegeben. Dann werden intern im Programm durch Interpolationen Zwischenwerte erzeugt. Diese müssen dann ebenso die vorher genannten Relationen erfüllen.

Literatur

Zu diesem Thema empfehlen wir das Buch von Rust(2011).

Persönliche Werkzeuge
Namensräume
Varianten
Aktionen
Navigation