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Introduction

If a cyclic force-controlled loading is applied to a system such that plastic
deformations and redeformations’appear there can be an increase of the plastic strain
each cycle. In a displacement-controlled experiment this results in a moving of the
mean stress. i

If the exitreme values of the plastic strain come to a standstill this effect is called
shakedown. If the changes in strain are only elastic at that point it is called elastic
shakedown, if a hysteresis remains it is called plastic shakedown.

Under some circumstances it is considered that the extreme values of the plastic
strain grow with a constant increment each cycle. This effect is called ratcheiting.
Ratchetting appears in isothermal as well as non-isothermal cases, and one has to
distinguish between material and structural ratchetting. In the isothermal case
ratcheiting normally can appear if the mean stress of the cyclic loading differs from 0.
fn this paper we only consider material effects in thermal ratchetting where stress and

temperature change in the same rhythm.

The application where this problem occurred was a pipe in a power plant centaining
once hot, once cold water (insurge/outsurge). The structural aspects due to the
temperature gradients and different phases in the hot state are excluded here. We
focus on the fact that due to constraints the thermal expansion leads to stresses
higher than the yield stress in both heating as well as cooling.

This paper discusses what is calculated by the ANSYS plasticity models.
Y

Kinematic hardening

For better understanding we consider stress-controlled uniaxial cases. The yield
condition for the kinematic hardening reads

J(O-—CE)SU}, (-I)

where J denotes the von Mises condition, ¢ the total stresses, a the back stresses,
the deviation of the yield surface, and o, the initial yield stress.

a is measured in stress units. Therefore, the question arises what happens when the
stress-strain relation changes due to a change in temperature. The US-Nuclear
Standard NE F 9-5T [1] tells us that a temperature-dependent change of a should be



taken into account, but it does not say how.

Bilinear kinematic hardening

For the bilinear kinematic hardening (BKIN) the ANSYS Theoretical Manual [2] tells
us that the increment of the back stresses is determined by

de = Cdep" (2)

where ¢” is the plastic strain, C the hardening modulus

EE
- (3) E—Ei =

E is Young’s modulus and E; the tangential modulus. As far as C is constant there is
a unique relation between e‘" and a (Fig. 1).
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Fig. 1: Bilinear kinematic hardening, isothermal cycies with different load levels

The bilinear model is a first approximation for the Bauschinger effect. In the
isothermal case no material ratchetting can be determined.

As to be seen in the sample of USERPL and to be read in QA notice 93-10 [3] BKIN
is not implemented as given by eq. (1) and (2) but follows the O.R.N.L. algorithm. In
each load step da is divided by 2G, G being the shear modulus, to obtain an
equivalent strain

deshit = 1 da = Cdep" (4)

2G 2G

1/2G is used because the plastic strain increments are deviatoric. With D being the
elastic constitutive matrix, D™ or 1/E in one dimension would lead to the same result.
The yield condition then reads



J(D{CGI__Bshﬁ‘tJ) < & (5)
The back stresses at the actual temperaiure T, are
o(To) = DT, [DXTY C(T)de” = DT, [IXT() " C(T(9)&Pat ®)

where the temperature T varies during the loading history, i.e. the temperature
dependency of a is related to that of Young’s modulus E. There is no difference
between eq. (1,2) and (4,5) if E does not depend on the temperature but C resp. E;
and o, do (Fig. 3).

Now consider the stress-strain curve in fig. 3 as a result of the temperature and load
history in fig. 2 (loading, unloading at T1, temperature change, reloading, unloading

at T2).
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Temperature and Load History
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Fig. 2: Temperature and load history

The amount of ¢ is different for both loading directions alt! ough the absclute
maximum stresses are the same. Therefore, yield appears earlier and the original
curve is not matched. This effect is repeated in each cycle - thermal ratchetting is
calculated.
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Fig. 3: Standard BKIN model

Now consider the case of similar material curves for different temperatures T, and T,,
i.e. the curves differ from each other only by one factor. In the bilinear case this

means

E| _E . E _§
Edr, Ed,, Cn Cg )

(Fig. 4,5). Now the ratchetting vanishes because « is recalculated by eq. (6) such that
the original curve is maiched.
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Fig. 4: BKIN, same temperature-dependency for E and C

The ratchetting phenomenon here is sensitive to the value of E. However, for
austenitic steel the exact value of E depends on the engineer’s estimate of the slope
of the stress-strain relation. Therefore, the ANSYS choice for the temperature
dependency of a is not very reasonable, because the ratchetting - a phenomenon of



plasticity - depends on that definition of the elastic properties.
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Fig. 5: BKIN, similar stress-strain curves
Putting eq. (7) into (8) one obtains
a = C[de” = CeP! (8)

because C(T,./E(T,.) = C(T)/E(T) = const.

This means « is independent of the temperature history. Several authors[e.g.4,6]
agree with that postulate but some with doubts. This assumption is not derived from
a universal natural principle, it is just a postulate.
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Fig. 6: BKIN, temperature-history independent back stresses

For arbitrary relations between C and E eq. (8) can easily be implemented or - in
order to be compatible with the standard programming -
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can be used. Rice [7] is cited in conjunction with this form but he does not explicitly
write that.

With this modification (TB,BKIN,,,,1 in Rev. 5.0A+) the result of fig. 6 is obtained
showing no ratchetting effect. With this modification material ratchetting in one
dimension cannot be obtained under any circumstances. Wether this agrees with
physics cannot be answered because no technical material has real linear hardening

behaviour.
Taking the total differential of (8) one obtains
de = Cde? + e#2Cqr - T
aT
Therefore, a German author[8] who strongly believes o eq. (8) states that a term is
missing in ANSYS. However, the total differential of oo must read

de” a7

The models above differ in the choice of 3ef3T . This is only a choice, although
def3T ~ 8G{3T seems to be more reasonable than 3«/6T ~ 80T (Standard-

ANSYS) oreven 3efdT = O (Theoretical Manual).

Multitlinear kinematic hardening

The piecewise linear kinematic hardening model in ANSYS (MKIN) is coded according
to Besseling[9]. In the one-dimensional case it can be represented by elastic-ideally
plastic spars where the sum over the cross section areas equals the total area. The
single areas or more general the weighting factors t. for the spring stiffness are
chosen such that the reduction of the tangent modulus is tE when the i-th spar begins
yielding. Instead of different cross sections different Young's moduli can be used. The
state variables are the plastic strains of the spars. Although there is no « in this
concept the multilinear model behaves like the bilinear one as far as they are
comparable. There is no thermal ratchetting when the material curves are similar.

Instead of using MKIN one can discretize the parallel spars where the material model
is BKIN or BISO with E;=0. This system behaves like a single spar with MKIN as long
as the temperature does not change. In the non-isothermal case, however,
differences appear. For the material curves of fig. 7 and the load and temperature
history of fig. 2 the stress-strain curves are shown in fig. 7 (MKIN) and 8 (parallel
spars). While the parallel spar model shows no ratchetting, with MKIN increasing
plastic strain occurs. However it is not a constant repetition like in the standard
bilinear model, but convergence fails within the fourth cycle. Under certain



circumstances increasing sirain increments
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|| 2.110° 1.8-10°
Table 1: Parameters for the paralle!l spar model
=l T I LT L P ek
epzilan

Fig. 8: Behaviour of the discretized parallel spar model



The reason-is the calculation of plastic strains. For each subiayer (generalized
expression for the spars in MKIN) a plastic strain increment is calculated. The total
plastic strain increment then is the weighted sum over all sublayers:

AeP = Zf‘;ﬁa}?{ (12)
i

In the isothermal case this results in

. 5_: te? (13)
I

because the t, are constant. This does not hold in the non-isothermal case, where the
t; are temperature-dependent. However, eq. (13) should be valid in all cases to
comply with the parallel spar model. By recalculating e from ¢ and t, in each load
increment the difference vanishes. If similar material curves are used cniy E changes
with temperature whereas the t, remain constant. Therefore, no problem arises.

Besseling did not discuss the non-isothermal case, i.e. MKIN is a correct
implementation of the Besseling model from this point of view, but it does not make
sense when the temperature changes. Only the small modification (13) is needed to
obtain a "consistent Besseling model" which behaves like the underlying image of the.
parallel spars and can be applied to the non-isothermal case.
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Fig. : MKIN a) Consistent Besseling model, recalculated plastic strain
b) Scaled state variables

With the load- and temperature-history of fig. 2 the result of fig. 9a shows strain
changes when only the temperature changes, because the plastic strain is
recalculated. This is probably not according to experiments. The result can be
isothermally obtained by applying the same total strain, not the plastic strain like in the
temperature-history independent model. An alternative is to scale the state variables
(one factor c,,, for each component of ") such that
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Z ffef Cscale = Sg! (14)
i

holds. The strain changes at load level 0 vanish (fig. 9b)
Relations between isothermal and non-isothermal cycles

The postulate of the temperature-history independence means that a should be
calculated as if the plastic strain is reached at a constant temperature. To compare
with the non-isothermal behaviour the extreme value of stress in one loading direction
must be modified in the isothermal case. This means non-isothermal loading with
mean stress 0 is equivalent to an isothermal cycle with a mean stress differing from
0. This makes a thermally induced ratchetting more probable.

Chaboche model

The kinematic hardening models are not appropriate tools to predict ratchetting and
shakedown. Therefore, a Chabochie[4,5] modei has been taken under consideration
and coded as USERPL. It is characterized by the combination of isotropic and
kinematic hardening in the yield condition

So-o) < 0,+R _ . (15)
and the evolution eguations

di = 3" (C;deP'-y,a,dD) (16)
=1
ar = KQ-Rdp (17)

where C,y,b and Q are material parameters, dp the equivalent plastic strain increment

dp = |deE de? (18)

If m=1, C derotes the initial hardening modulus and C/y the saturation value for o. Q

is the saturation value for R.
Eq. (16) can be written as

da = (CN-ya)dp (19)

where N denotes the direction of the plastic strain which is

3ffdo (20)
lef/oa

according to Drucker's postulate. We get the differential equation

«/(p)+ya(p) = CN (21)



with the boundary condition
O:(p:pg) = O:D (22)
This eguation can be solved as long as N is constant, i.e. at least during a load step.

p, and o, are cumulated plastic strain and back stresses at the beginning of the load
increment. With

@ = agtha , p = pPo+Ap (23)

we can replace o by dAo/dAp and rewrite
Ac'+y(ay+Aa) = CN
- Aa'+yAa = CN-ya, 2 (24)
b.c: Aa(Ap=0) =0 ) :

which results in

@ = a0+(ﬂ’-%)(1 —e ) (25)
L

Q may depend on p:
) = QM_*' (QOHQM)G_EP‘D , (26)

Q,,Q, and p are additional material parameters. Eq. (17) describes the short-range
behaviour, (26) the long-range terms.

For the following examples E=2.1-10%, C=3-10% and ¢,=200 are used at T=0 and
E=1.8-10°, C=5.5-10* and o,=144 at T=200 (y=700, b=Q=0). Fig 10 shows stress-
strain curves for the two temperatures. .
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Fig. 10: Chaboche model, stress-strain curves



Fig. 11a and b show the behaviour with constani temperature T=200 resp. T=0. It
looks like the typical kinematic hardening including the Bauschinger effect.
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Fig. 11: Chaboche model, isothermal cycles, a) T=200, b) T=0

C, b, Q, and Qy, can be temperature-dependent. To obtain the independence of the
temperature history

N 02 : (27)

is stored as a history variable instead of o which is recalculated in the next step by
multiplying o by C(T,,. This is according to Chaboche[4], McDoweli[6] and
Ohnc/Wang[10]. For R the proposal of Chabochel4] is to store

i (28)

but this does not lead to the wanted effect if both b and Q are temperature-
dependent. Therefore, R is divided by the solution of the differential equation (17) for
constant Q to obtain the state variable

e £ 5 (29)
_9"

The non-isothermal cycles according to fig. 2 yield a large amount of increasing
plasticity (fig 12a). Let us now consider the case T=200 with the stress range +220/
-180.4 (fig 12b). Increasing plasticity occurs in this isothermal case, t0o. The lower
stress in this example is chosen such that the plastic strain is equivalent to that of the
loading +220/T=200 and -220/T=0. That means the temperature-history independence
holds, but the Chaboche model, at least with m=1, overpredicts ratchetting.
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Setting ¥=0, u=4 as well as b=100, Q;=79, Q=0 for T=0 and b=151, Q,=40, Q,,=0 for
T=200 and applying the load and temperature history of fig. 1 one obtains the stress-
strain curve of fig. 13b. The hysteresis loop slims because of the short-range terms,
and then it is eniarged due to the long-range behaviour. It will come to a standstill

when the saturation values of G are reached.
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Fig. 13: Linear kinematic hardening, a) without b) with isotropic hardening

Extensions to the MKIN model

As shown in conjunction with the Chaboche model such effects concerning the form
of the hysteresis loop (which can be observed in experiments) can be modeled by
isotropic hardening. The following extension to MKIN is implemented in 1d at the
moment. For MKIN a stress-strain curve is given. Here the user specifies which
percentage B of the hardening in that curve is isotropic. The remaining part is
kinematic. To include the long-range terms 8 depends on p



B = ﬁu“'(ﬁo‘

Bre "

(30)

The results with this model (including eq. (14)) are very similar to that of the
Chaboche model with linear kinematic hardening (y=0, fig. 13) as far as they concern

the position of the hysteresis loop, but h

means the classical models are not out
comprehensible input data.

ere nonlinear hardening is included. That
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; T 7
eycle 1 1o 4
eycle 4 te 10
=0
# =T
1239]
o]
- . E 3
-
—1or]
=10
2o __;??:i
S TP R e e o s
L 1.6 3.3 4.3 Ead
epsilen epailon
combined Isctreple and klnematic hardening combined isotreple mand kinematic hmardening

Fig. 15: extended MKIN, a) first cycles D) last cycles

Conclusions

The ANSYS

kinematic hardening in the isothermal case.

plasticity models BKIN and

MKIN are correct implementations of
Standard BKIN complies with the US-



Nuclear standard alsc in the non-isothermal case. So does option 1 which does not
overpredict thermal ratichetting. Standard MKIN cannot be recommended for non-
isothermal cyclic loading.

The simple modifications to MKIN outlined above should be made available to all
users like the BKIN options. A combined isotropic-kinematic model should be offered.
The Chaboche model - developped in cooperation of SASI and CAD-FEM - should be
improved before being applied to real problems.
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CAD-FEM-Chaboche-Modell

Das Plastizitatsmodell in Anlehnung an Chaboche benutzt die FlieRbedingung

J(O'-Oz = GI-!-R (1)
wobei o die Von-Mises-FlieRbedingung bedeutet,
o die Spannungskomponenten,
a die Verschiebung der FlieRflaiche (fir kinematische
Verfestigung),
O die AnfangsflieBgrenze und
R die Erhéhung der FlieBgrenze infolge isotroper Verfestigung

a und R sind Summen:

m

o =Z}:a;, R =2.R,.

Fir die a; gilt die Evolutionsgleichung

da, = (C,de” - y &, de

o

Dabei sind

d(...} Inkremente,

C., v, Konstante,

e”  die plastischen Dehnungskomponenten und
€, die kumulierte plastische Dehnung.

Fur die R, gilt
dR, = b(O, R)de""

Dabei sind b; und Q,; Materialkonstanten.

In der CAD-FEM-implementierung ist m auf 5 beschrankt.

C;und Q, sind temperaturabhéngig vorgesehen; Werte fiir bis zu fiinf Temperaturen
kénnen eingegeben werden. Um Temperaturratcheting zu vermeiden, wird statt a

4 do, i
a; =IC;D und R, =I£%

gespeichert und in (1)

o, = C(Ta;, und R, = Q(DR/’

verwendet.
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CAD-FEM-Mroz-Modell

Das Mroz-Modell fiir Plastizitdt mit kinematischer Verfestigung ist mit dem in
ANSYS standardmaRig vorhandenen Besseling-Modell (MKIN) verwandt,
unterscheidet sich jedoch davon in zwei Punkten:

1) Die Eingabe 1aRt wie MKIN je fiinf Spannungs-Dehnungs-Paare bei flnf
verschiedenen Temperaturen, jedoch mit unterschiedlichen
Dehnungsstitzstellen zu.

2) Die Verschiebung der TeilflieRflachen wird so gewahlt, dal sie sich nicht
schneiden kdnnen. Das ergibt bei nichtproportionaler Belastung einen
Unterschied im Ergebnis.

Ahnlich MKIN, Option 2, (s. [1]) wird eine Anderung der Verschiebung der
FlieRflachen mit der Temperaturanderung berlcksichtigt. :
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