

TFLOP Performance for ANSYS Mechanical

Dr. Herbert Güttler

MicroConsult Engineering GmbH Holunderweg 8 89182 Bernstadt www.microconsult-engineering.de_

May 2009, Ansys12, 512 cores, 1 TFLOP per second

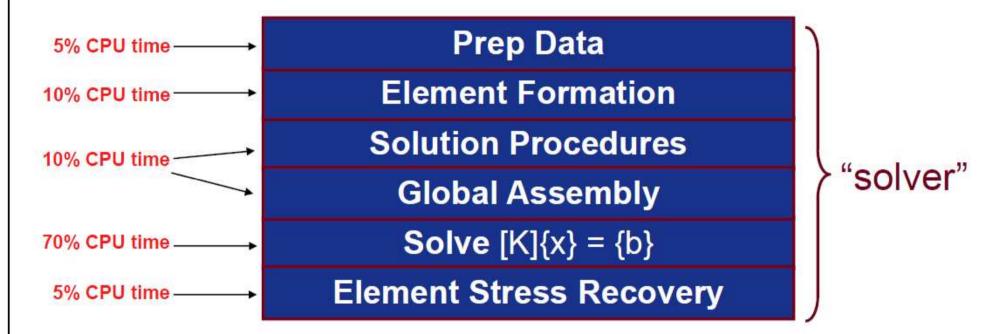
ANSYS 12.0 High-Performance Computing Capabilities Mean More Productive Use of Engineering Simulation

Major Advances in New Release Deliver Teraflop Performance

SOUTHPOINTE, Pa.--(BUSINESS WIRE)--May. 11, 2009-- ANSYS, Inc. (NASDAQ: ANSS), a global innovator of simulation software and technologies designed to optimize product development processes, today announced significant high-performance computing (HPC) milestones achieved with ANSYS[®] 12.0. The new release delivers impressive performance gains that enable product development teams to increase the value of simulation by considering large, high-fidelity models in shorter turnaround times. Key HPC achievements in the recent release include optimized parallel computing performance on multi-core processors, expanded support for large simulations, scaling breakthroughs, and support for parallel file systems. These product enhancements deliver best-in-class HPC capability for multiphysics simulations, engineered to scale from multi-core desktop workstations to departmental clusters and large enterprise supercomputers.

"Engineers today are including more geometric details in their analyses and looking for a more-realistic treatment of physical phenomena. Both of these factors drive the need for outstanding performance on the latest computing platforms," said Jim Cashman, president and CEO of ANSYS, Inc. "ANSYS 12.0 is our most HPC-capable release to date, and it delivers tremendous value to customers who need faster turnaround and the ability to consider high-fidelity multiphysics simulations. HPC is an important part of Simulation Driven Product Development[™], since it delivers efficiency and productivity improvements to engineering organizations seeking to gain a competitive advantage in today's business climate."

ANSYS 12.0 technology incorporates optimization for the latest multi-core processors and benefits greatly from recent improvements in processor architecture, resulting in highly efficient use of parallel processing to reduce the turnaround time for simulation. Improved algorithms for model partitioning, combined with optimized communications and load balancing between processors, have yielded additional parallel scaling breakthroughs. For structural mechanics analyses, dramatically improved scaling is observed on desktop parallel systems, and a major performance milestone of over 1 teraflop has been achieved via cluster computing on 512 cores. Teraflop performance is well over 100 times faster than the fastest single-core performance currently observed, reducing run times from days to minutes on the most challenging simulations. For fluid dynamics simulations, nearly ideal linear speedup has been demonstrated out to 1,024 cores, roughly doubling the core count for ideal scaling compared to previous releases. At 2,048 cores, scaling remained at approximately 80 percent of ideal linear performance. ANSYS FLUENT[®] 12.0 software introduces parallel input and output (I/O) of files, dramatically reducing turnaround time for large simulations that involve extensive I/O and removing file handling as a bottleneck for scaling on large clusters. In addition, ANSYS 12.0 technology includes important enhancements that enable larger simulations than ever before, setting the stage for customers to consider highly detailed physical phenomena and full-assembly models in their fluids or structural simulations.


ANSYS CONFERENCE &

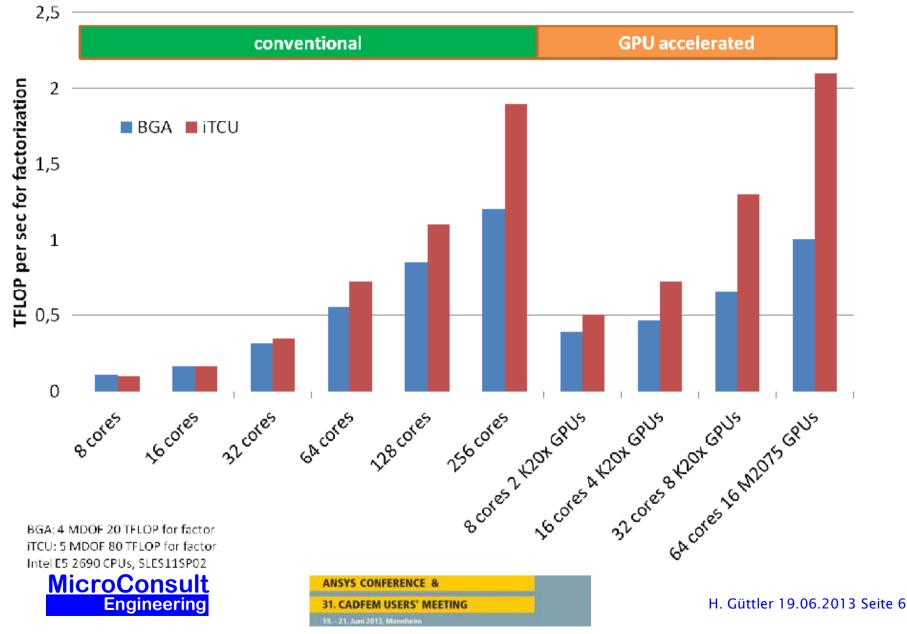
31. CADFEM USERS' MEETING

19. - 21. Juni 2013, Manufactory

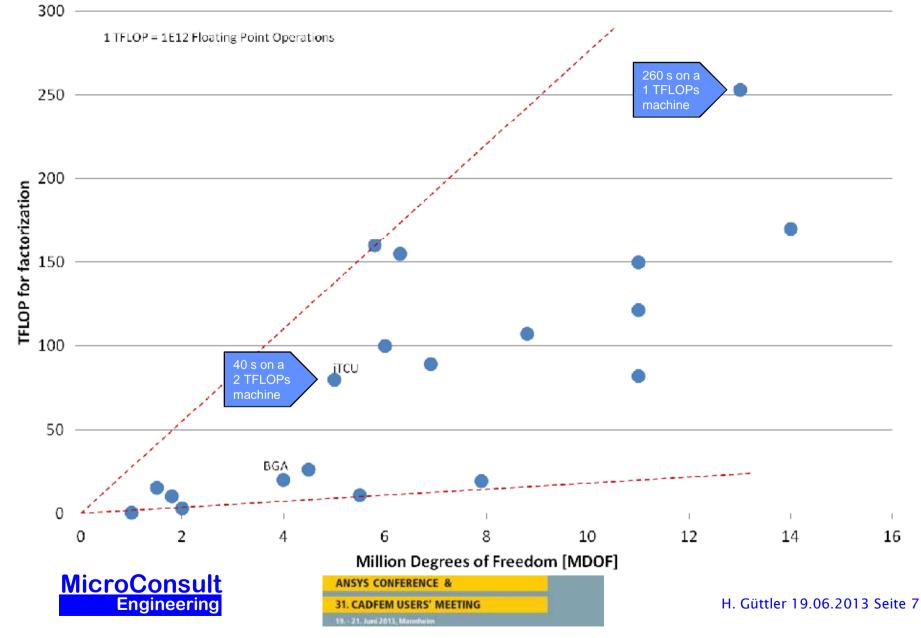
ANSYS Solver Basics: Solution Overview

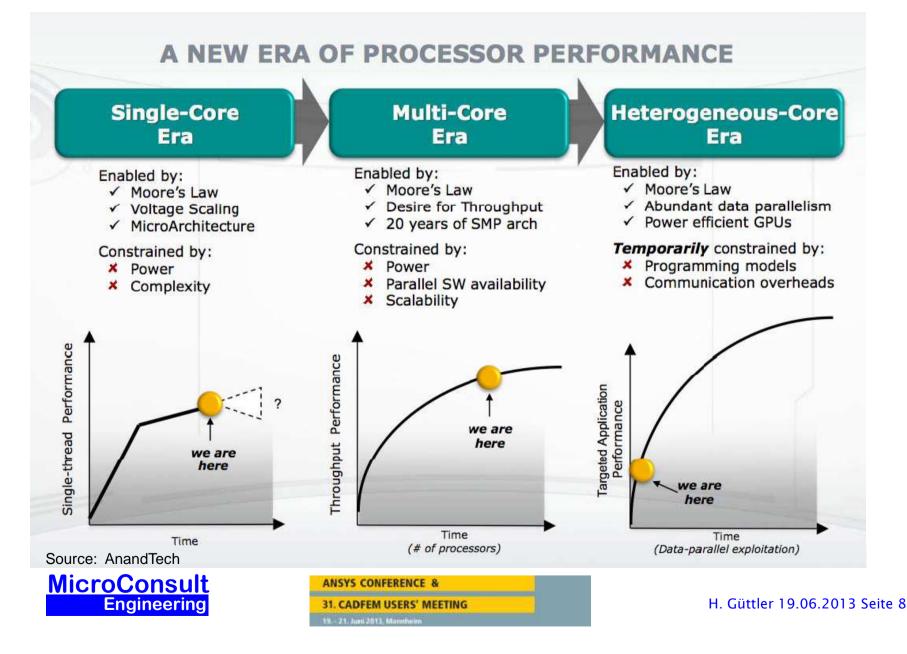
- Equation solver dominates solution CPU time! Need to pay attention to equation solver
- Equation solver also consumes the most system resources (memory and I/O)

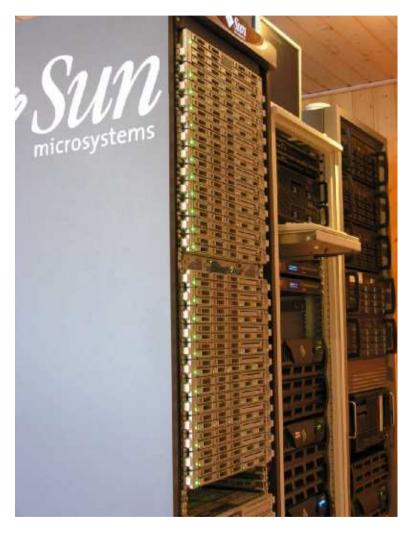
Numerical Effort for a random selection of MCE Projects ANSYS MAPDL, sparse solver



Stats data can be found here


			file.DSP	
= multifrontal statistics =		p.ex.	IIIe.DSP	
number of equations	=	5162979		
no. of nonzeroes in lower triangle of a	= 40	06162561		
no. of nonzeroes in the factor l	= 1187	77671289		
ratio of nonzeroes in factor (min/max)	=	0.1692		
number of super nodes	=	64238		
maximum order of a front matrix	=	13914		
maximum size of a front matrix	= 9	96806655		
maximum size of a front trapezoid		59723199		
no. of floating point ops for factor		3384D+13		
no. of floating point ops for solve		5973D+10		
ratio of flops for factor (min/max)	=	0.4117		
near zero pivot monitoring activated		0.1117		
number of pivots adjusted	-	0		
negative pivot monitoring activated		0		
number of negative pivots encountered	=	0		
factorization panel size	_	128		
number of cores used	_	128 64		
GPU acceleration activated	=	04		
		00 7144		
percentage of GPU accelerated flops	= 1	99.7144	1 050000	
time (cpu & wall) for structure input		L.060000	1.058888	
time (cpu & wall) for ordering		4.095459	14.095459	
time (cpu & wall) for other matrix prep		5.354541	7.541591	
time (cpu & wall) for value input		0.950000	0.944036	
time (cpu & wall) for matrix distrib.		3.340000	3.326019	
time (cpu & wall) for numeric factor		5.900000	37.974798	
computational rate (mflops) for factor		5.338670	2064102.972591	
time (cpu & wall) for numeric solve		0.730000	0.723194	
computational rate (mflops) for solve		5.638293	64952.225467	
effective I/O rate (MB/sec) for solve	= 245160	0.688215	247467.975314	
Memory allocated on core 0 = 2	2420.815 MH	3	$\mathbf{\lambda}$	
-	2283.246 ME			
	205.210 11			
 Memory allocated on core 62 = 2	2758.796 ME	3		
A	3805.647 ME			
Total Memory allocated by all cores = 156				
		-		
DSP Matrix Solver CPU Time (sec) =		2.870	-	
DSP Matrix Solver ELAPSED Time (sec) =		5.165 🖊		
DSP Matrix Solver Memory Used (MB) =	2420	0.815		
ANSYS CONFERENCE &				
DE CADERA UCEDE MEETING			H. Güttler	10.04
31. CADFEM USERS' MEETING			n. Gutter	19.00
19 21. Juni 2013, Manishelm				


Performance Results


Numerical Effort for a random selection of MCE Projects ANSYS MAPDL, sparse solver

Current status of HPC Computing

Tools (Hardware: Oct 2010)

· Compute Servers

- 8 Intel Harpertown systems: (SUN X4150) total of 64 cores, 496 GB RAM
- 16 Intel Nehalem systems: (SUN X4170) total of 128 cores, 1140 GB RAM
- Memory / core typ. 8GB
- Infiniband interconnect across servers
- Each with local Raid 0 disk array
- Operating System: SUSE Linux Enterprise Server
- Latest addition: 1 AMD Opteron 6172 System (Magny Cours) 48 cores, 192 GB RAM
- UPS, Air conditioning
- Max. power consumption ~ 18kW

Applications: ANSYS Mechanical, optiSLang

MicroConsult Engineering

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING

Interconnect: FDR Performance

Latence	cies	Bandwidth
Latency time from master to core Latency time from master to core Latency time from master to core 	1 = 1.259 μs 2 = 1.175 μs 3 = 1.235 μs	Communication speed from master to core 1 = 8077.06 MB/sec Communication speed from master to core 2 = 8857.00 MB/sec Communication speed from master to core 3 = 9372.93 MB/sec
Latency time from master to core Latency time from master to core Latency time from master to core 	9 = 2.183 µs 10 = 2.393 µs 11 = 1.836 µs	Communication speed from master to core 9 = 5312.38 MB/sec Communication speed from master to core 10 = 5377.34 MB/sec Communication speed from master to core 11 = 5081.82 MB/sec
Latency time from master to core Latency time from master to core Latency time from master to core Latency time from master to core Latency time from master to core Latency time from master to core Latency time from master to core	<pre>16 = 1.979 μs 17 = 2.012 μs 18 = 2.008 μs 28 = 1.993 μs 29 = 2.366 μs 30 = 2.333 μs 31 = 2.119 μs</pre>	Communication speed from master to core16 = 5121.90 MB/secCommunication speed from master to core17 = 5313.56 MB/secCommunication speed from master to core18 = 5249.56 MB/secCommunication speed from master to core28 = 4939.63 MB/secCommunication speed from master to core29 = 4939.24 MB/secCommunication speed from master to core30 = 4765.06 MB/secCommunication speed from master to core31 = 4925.74 MB/sec

core – core on die	core	- core	on	die
--------------------	------	--------	----	-----

socket - socket

node - node

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING

19.-21. Juni 2013, Mansheim

Tools (Hardware: Jan 2013)

MicroConsult Engineering

128 E5 Sandy Bridge cores 2.9 GHz156 Westmere cores 2.9 GHzUp to 4 GPUs per nodeUp to 2 GPUs per node

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19. - 21. Juni 2013, Manusheim

Tools (Hardware: April 2013)

ANSYS CONFERENCE &

31. CADFEM USERS' MEETING

19.-21. Juni 2013, Mansheim

Tools (Hardware: June 2013)

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING

Comparison for 5 MDOF model (R14.5.7)

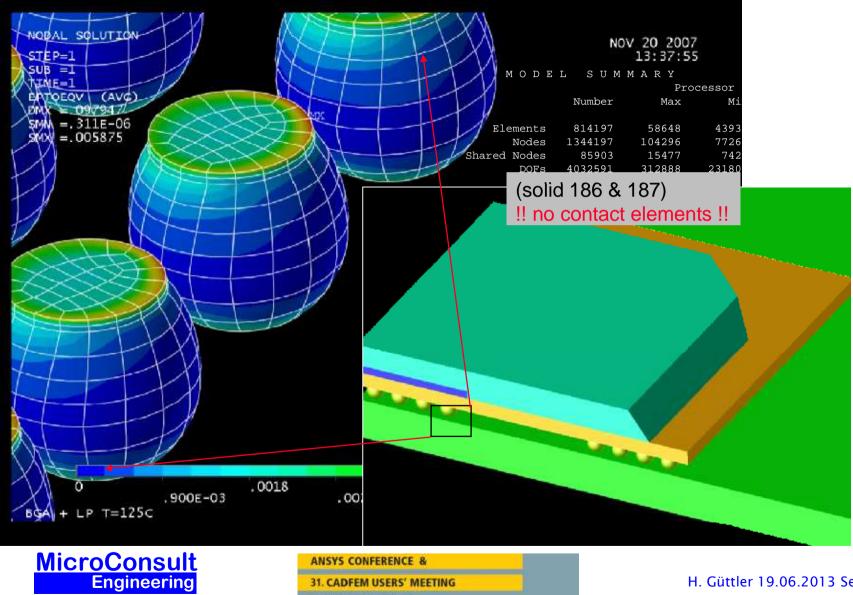
...

number of equations = 5162979	number of equations = 5162979
no. of nonzeroes in lower triangle of a = 406199623	no. of nonzeroes in lower triangle of a = 406199677
no. of nonzeroes in the factor 1 = 12023957495	no. of nonzeroes in the factor 1 = 11901546940
ratio of nonzeroes in factor (min/max) = 0.0165	ratio of nonzeroes in factor (min/max) = 0.3530
number of super nodes = 64330	number of super nodes = 64176
maximum order of a front matrix = 13764	maximum order of a front matrix = 14307
maximum size of a front matrix = 94730730	maximum size of a front matrix = 102352278
maximum size of a front trapezoid = 62166852	maximum size of a front trapezoid = 65659593
no. of floating point ops for factor = 8.3112D+13	no. of floating point ops for factor = 7.9920D+13
no. of floating point ops for solve = $4.7458D+10$	no. of floating point ops for solve = 4.7105D+10
ratio of flops for factor $(\min/\max) = 0.0200$	ratio of flops for factor (min/max) = 0.4342
near zero pivot monitoring activated	near zero pivot monitoring activated
number of pivots adjusted = 0	number of pivots adjusted = 0
negative pivot monitoring activated	negative pivot monitoring activated
number of negative pivots encountered = 0	number of negative pivots encountered = 0
factorization panel size = 128	factorization panel size = 128
number of cores used = 128	number of cores used = 32
	GPU acceleration activated
	percentage of GPU accelerated flops = 98.2176
time (cpu & wall) for structure input = 1.080000 1.081304	time (cpu & wall) for structure input = 1.590000 1.590859
time (cpu & wall) for ordering = 15.326202 15.326202	time (cpu & wall) for ordering = 18.430191 18.430191
time (cpu & wall) for other matrix prep = 7.683798 7.611568	time (cpu & wall) for other matrix prep = 8.659809 12.335555
time (cpu & wall) for value input = 1.020000 1.011115	time (cpu & wall) for value input = 1.130000 1.130927
time (cpu & wall) for matrix distrib. = 3.040000 3.053448	time (cpu & wall) for matrix distrib. = 9.680000 9.896982
time (cpu & wall) for numeric factor = 73.570000 73.376386	time (cpu & wall) for numeric factor = 57.260000 58.358889
computational rate (mflops) for factor = 1129695.075130 1132675.943119	computational rate (mflops) for factor = 1395732.069696 1369450.643294
time (cpu & wall) for numeric solve = 0.760000 0.833381	time (cpu & wall) for numeric solve = 2.560000 2.563528
computational rate (mflops) for solve = 62444.779013 56946.350716	computational rate (mflops) for solve = 18400.567684 18375.247013
effective I/O rate (MB/sec) for solve = 237914.604467 216965.592968	effective I/O rate (MB/sec) for solve = 70106.161822 70009.690068
Memory allocated on core 0 = 1587.283 MB	Memory allocated on core $0 = 4952.022$ MB
Memory allocated on core $1 = 1581.346$ MB	Memory allocated on core $1 = 4303.400 \text{ MB}$
Memory allocated on core $126 = 1460.529 \text{ MB}$	Memory allocated on core 30 = 3476.934 MB
Memory allocated on core $127 = 1074.435$ MB	Memory allocated on core 31 = 5166.779 MB
Total Memory allocated by all cores = 209273.372 MB	Total Memory allocated by all cores = 153019.380 MB
DSP Matrix Solver CPU Time (sec) = 103.790	
DSP Matrix Solver ELAPSED Time (sec) = 103.691	DSP Matrix Solver CPU Time (sec) = 105.440
DSP Matrix Solver Memory Used (MB) = 1587.283	DSP Matrix Solver ELAPSED Time (sec) = 110.549
	DSP Matrix Solver Memory Used (MB) = 4952.022

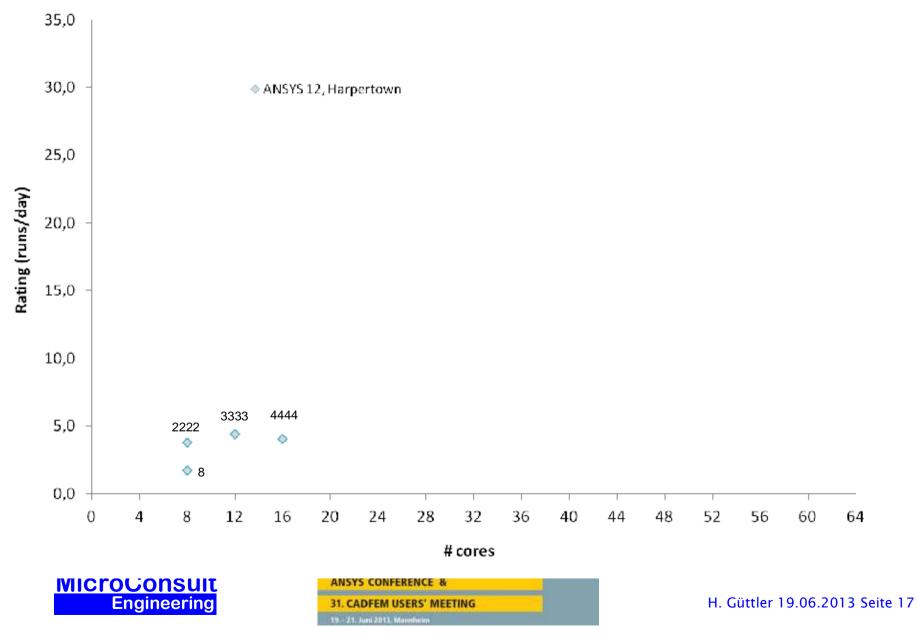
w dual GPUs (4x E5 2690 / 8x Kepler K20x)

= multifrontal statistics =

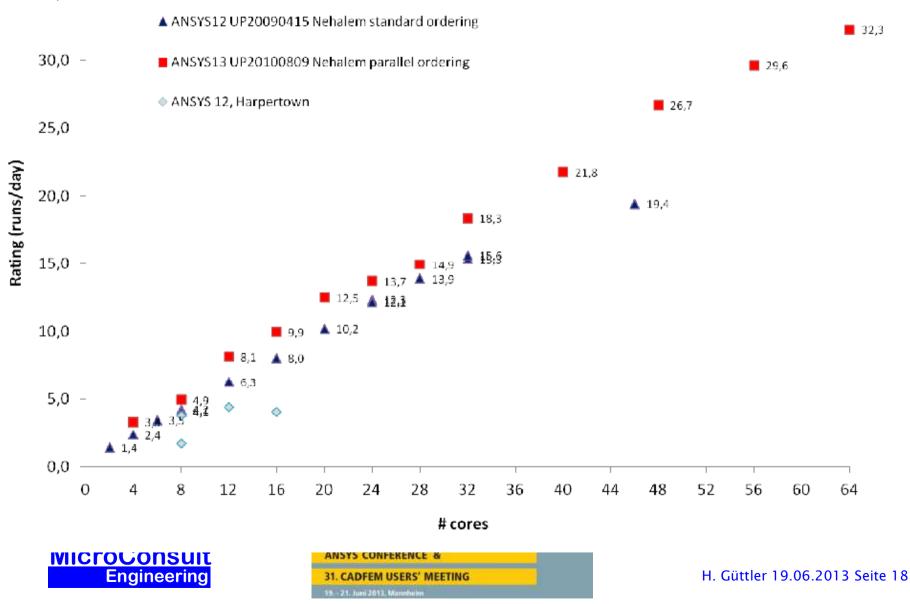
ANSYS CONFERENCE & 31. CADFEM USERS' MEETING

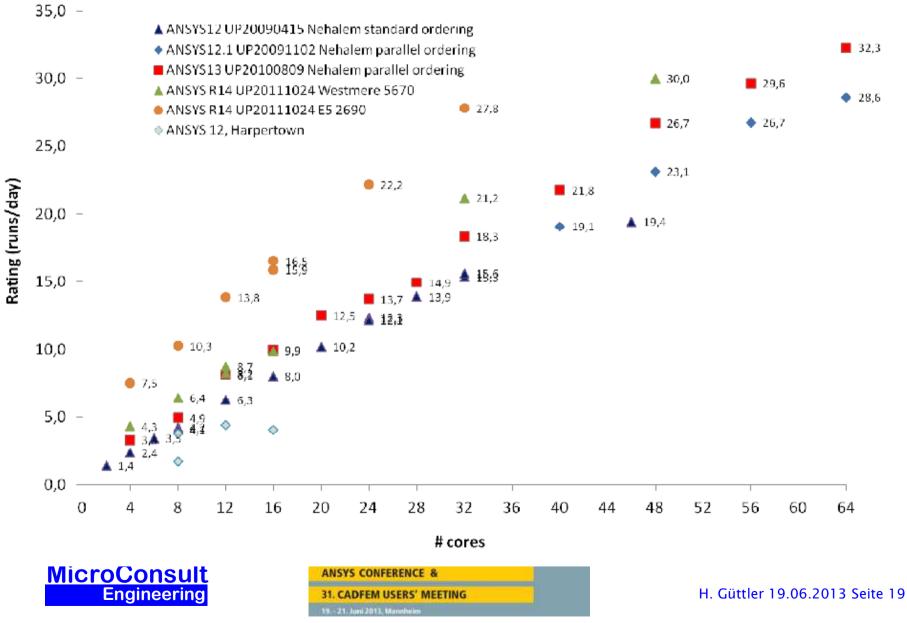

19.-21. Juni 2013, Mansheim

Applications

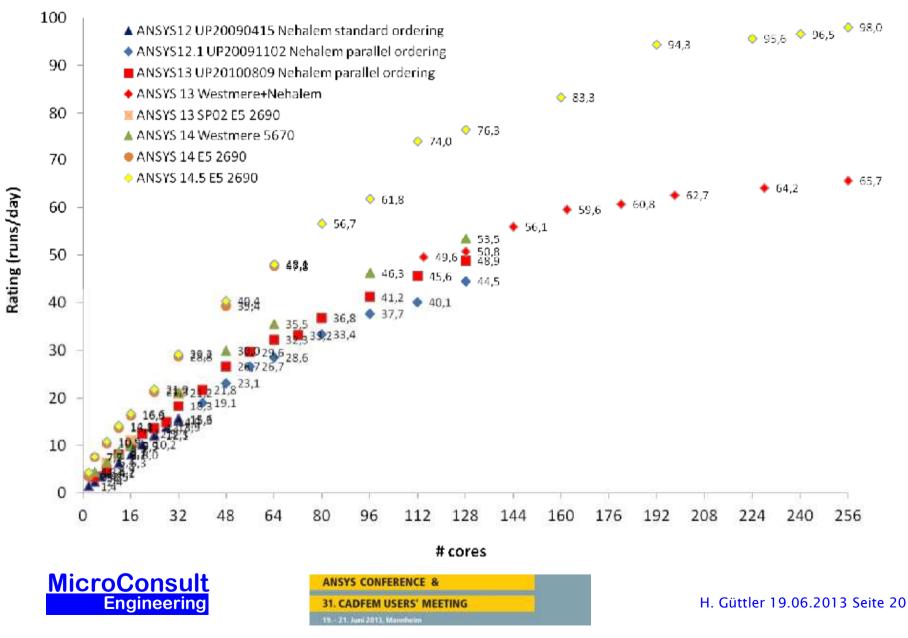

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19. - 21. Juni 2013. Manufacture

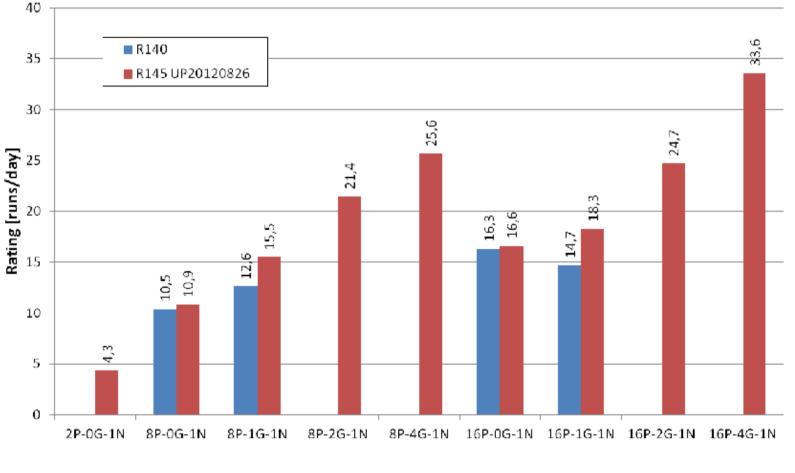
Example: Ball grid array


31. CADFEM USERS' MEETING 19.-21. Juni 2013, Mansheim



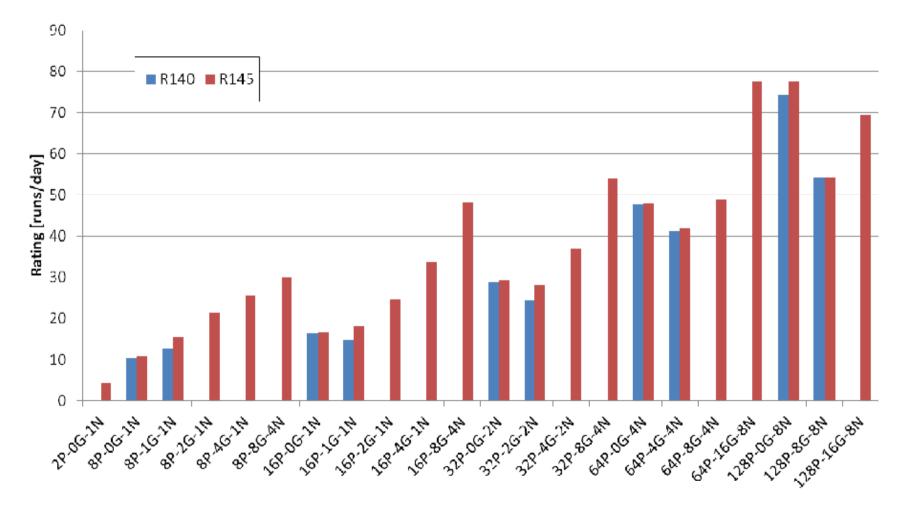
HPC mit ANSYS 14.0


35,0 -


HPC mit ANSYS 14.0

HPC mit ANSYS 14.5

BGA Benchmark with R14.5 on Sandy Bridge Xeons + GPUs



Single node / Workstation class

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19. - 21. Juni 2011. Manufacture

BGA Benchmark with R145 (compilation of all results)

MicroConsult Engineering

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 13. - 21. Juni 2011. Manusheim

GPU Acceleration

Real life test @ MicroConsult: Hardware: E5 2690 4x Tesla K20X Accelerator, DSPARSE

Tuo Jun 18 12:09:58 2013

Tue Jun 18 12:10:28 2013

		1	rsion: 319.23	iver Ve	.23 Dr:	5.319	IA-SMI	NVID
Compute M.	GPU ULI1	y Usage	Bus Id Memor	ge/Cap)	PwrbUsag	Perf	Temp	Pan
Off Default	99%	Off 6143MB	0000:02:00.0 4118мв /	0ff 235%		K20Xm	Tesla	0
Off		ott j	0000:03:00.0 1990MB /	ott i				
	99%	6143MB	0000:03:00.0 3764мы /	235W	109W /	120	28C	N/A
off		off	0000:84:00.0 3680MB /	off		K20Xm	Tesla	3

Compute M.	GPU ULII	y Usage	Bus-Id Memor		GPU Fan
Off		Off	0000:02:00.0 349MD /		
Ofi Delauli	0%		0000:03:00.0 349MB /	 	 _
OF) Default			0000:83:00.0 349мв /		
Off Default			0000:04:00.0 349MB /		3 N/A

+				-+ '						-+
Comput- GPU	e process FID	es: Process name	GPU Memory Usage		Comp: GPU	ite proc		es: Process name	GFU Memory Usage	/
0	26177	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	L316MB	1	0	2.61	.77	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	8 OMB	
1 0	26103	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	1362MB	1	0	261	.03	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	8 OMB	1
1 0	26180	/usr/ansys_ine/v145/ansys/bin/linx64/ansys.e145	80MB	1	0	261	80	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	8 0MB	1
1 0	26111	/usr/ansys inc/v145/ansys/bin/linx64/ansys.c145	1331MB		0	261	11	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	8 OMB	1
1	26102	/usr/ansys/inc/v145/ansys/bin/linx64/ansys.e145	519MB	1		261	02	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	8 OM B	
1	26179	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	1290MB	1	1	2.61	79	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	8 0MB	1
1	26107	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	COMB	1	1	261	87	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	8 OMB	1
1	26102	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	COMB	1		261	82	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.c145	8 OM B	1
1 2	26191	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	000MIN	1	2	261	91	/usr/ansys/inc/v145/ansys/bin/linx64/ansys.e145	SOME	- i
1 2	26170	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	075MB	1	2	261	78	/usr/ansysTinc/v145/ansys/bin/linx64/ansys.e145	8 OMB	- i
1 2	26181	/usr/ansys_ine/v145/ansys/bin/linx64/ansys.e145	888MH	1	2	261	81	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.c145	8 0 M B	- i
2	26155	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	1092MB	1	i 2	261	55	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	8 0 MB	- i
1 3	26176	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	1014MB	1	i 3	261	76	/usr/ansys_inc/v145/ansys/bin/linx84/ansys.e145	8 0MB	i
3	26122	/usr/ansys inc/v145/ansys/bin/linx64/ansys.e145	1297MB	1	1 3	261		/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	8 OM B	i
3	26167	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	80MB	i.	I 3	261	67	/usr/ansys inc/v145/ansys/bin/linx64/ansys.c145	8 OMB	i
1 3	26153	/usr/ansys_inc/v145/ansys/bin/linx64/ansys.e145	1259MB	i.	3		53	/usr/ansys inc/v145/ansys/bin/Linx64/ansys.e145	8 OMB	
1				1	i			· · · · · · · · · · · · · · · · · · ·		- i

Duty Cycle ca. 20-30%

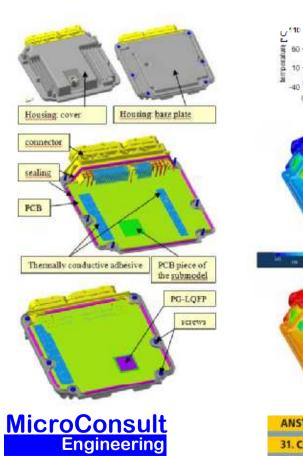
ANSYS	CONFERENC	E &	
CONTRACTOR OF STREET, ST. OF	FEM USERS	And I I I I I I I I I I I I I I I I I I I	

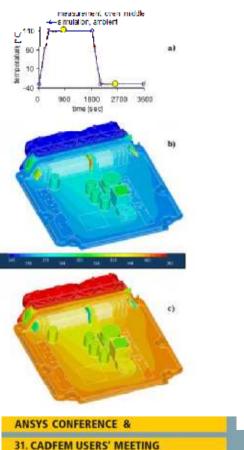
Next steps

MicroConsult Engineering

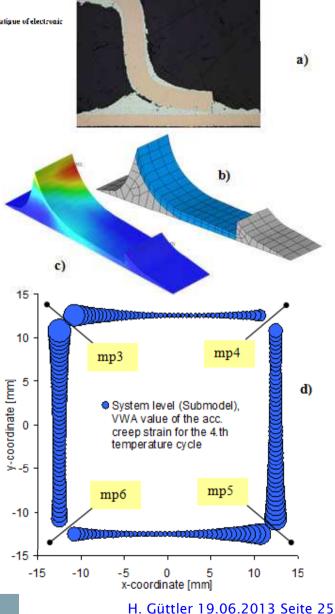
ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19. 21. Juni 2013, Manufacing

Applications:


Development of a subagodyl technique for the simulation of solder joint fatigue of electronic devices mounted within an assembled ECU. Natalis ichafat, Christian Lonan, Vaich Becker Robert Doch Gmbli, Sgörgelegeligen, Gennary


Heibert Güttler, Philipp Schwid MicroQuartell CmbH, Boundall, Company

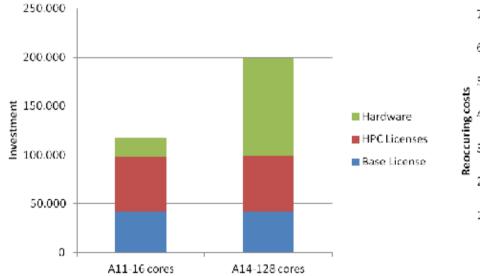
BGA, LQFP •

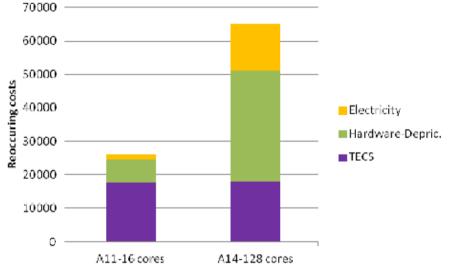

PCB

- Einzelbauteile & Systembetrachtung •
- Schwerpunkt Lotkriechen •

19.-21. Juni 2013, Manusheim

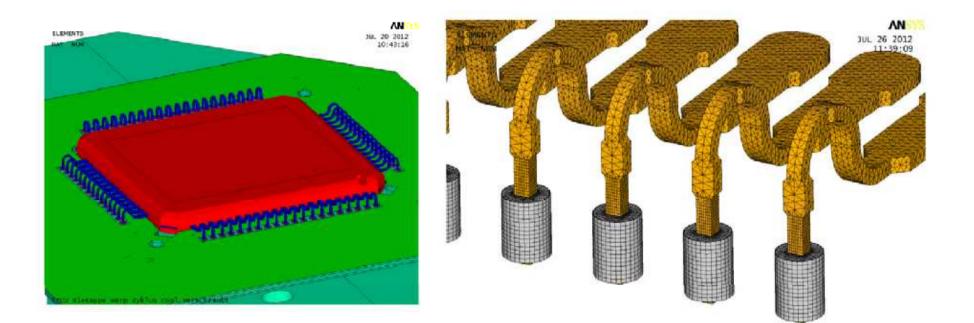
Benchmark Results: Leda Benchmark


Procedure	ANSYS 11	ANSYS12	ANSYS12.	ANSYS13	ANSYS 14	ANSYS 14.5	ANSYS 14.5
			1	SP02	(UP20110901)		(UP20120826)
Thermal	4h				1h (8 cores +		
(full model)	(8 cores)				1 GPU)		
3 MDOF					0.8h		
					(32 cores)		
Thermo-	~ 5.5 days	34.3h for	12.5h for	9.9h for	7.5h for 195	6.4h for 196	7.2h for 196
mechanical	for	164	195	195	iterations	iterations	iterations
Simulation	163	iterations	iterations	iterations	(128 cores)	(128 E5 cores)	(72 cores + 12
(full model)	iterations	(20 cores)	(64 cores)	(64 cores)		1	GPUs)
7.8 MDOF	(8 cores)				C		
Interpolation	37h for 16	Identical to	Identical to	0.2h	0.2h	Best Performance w	vith
of boundary	Loadsteps	ANSYS 11	ANSYS 11	(improved	E	E5 Xeons	
conditions				algorithm)		l V	
Submodell:	~ 5.5 days	38.5h for	8.5h for	6.1h for	5.9h for 498	4h for 498	5.5h for 498
Creep Strain	for	492	492	488	iterations	iterations (128	iterations (72
Analysis	492	iterations	iterations	iterations	(64 cores +	E5 cores)	cores + 12
5.5 MDOF	iterations	(16 cores)	(76 cores)	(128	8GPUs)	4.8h	GPUs)
	(16 cores)			cores)		(128 E5 cores +	
					4.2h	16 GPUs)	
					(256 cores)		
	2 weeks	5 days	2 days	1 day	½ day		


All runs with SMP Sparse or DSPARSE solver Hardware 11 & 12: Dual X5460 (3.16 GHz Harpertown Xeon) Hardware 12.1...14.5: Dual X5570 (2.93 GHz Nehalem Xeon) or Dual X5670 (2.93 GHz Westmere Xeon), M207x Nvidia GPUs, 14.5 results also with Dual E5 2690 (2.9 GHz Sandy Bridge Xeon) ANSYS 14 + 14.5 creep runs with NROPT,,crpl + DDOPT, metis ANSYS 12...14.5 runs with Infiniband interconnect

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19. - 21. Juni 2013, Manufactoria

Comparison: 2009 vs. 2012


Update 2013: software costs dominate, even @ 128 cores.

ANSYS CONFERENCE &	
31. CADFEM USERS' MEETING	
12 - 21. Juni 2013, Mansheim	

Examples

periodic structure, identical pins

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 12. - 21. Juni 2013. Manufacium

Comparison for 5 MDOF model (w. contacts; R14.5)

...

w dual GPUs (E5 2690)
== multifrontal statistics =

number of equations	= 5162979				
no. of nonzeroes in lower triangle of a			number of equations	= 5162979	
no. of nonzeroes in the factor 1	= 11975754349		no. of nonzeroes in lower triangle of a	= 406162561	
ratio of nonzeroes in factor (min/max)			no. of nonzeroes in the factor l	= 11877671289	
			ratio of nonzeroes in factor (min/max)	= 0.1692	
number of super nodes	= 64317		number of super nodes	= 64238	
maximum order of a front matrix	= 18405		maximum order of a front matrix	= 13914	
maximum size of a front matrix	= 169381215		maximum size of a front matrix	= 96806655	
maximum size of a front trapezoid	= 109457337		maximum size of a front trapezoid	= 59723199	
no. of floating point ops for factor	= 8.1909D+13		no. of floating point ops for factor	= 7.8384D+13	
no. of floating point ops for solve	= 4.7268D+10		no. of floating point ops for solve	= 4.6973D+10	
ratio of flops for factor (min/max)	= 0.0388		ratio of flops for factor (min/max)	= 0.4117	
near zero pivot monitoring activated			near zero pivot monitoring activated	- 0.1117	
number of pivots adjusted	= 0		number of pivots adjusted	= 0	
negative pivot monitoring activated			negative pivot monitoring activated	- 0	
number of negative pivots encountered	= 0		number of negative pivots encountered	= 0	
factorization panel size	= 128		factorization panel size	= 128	
number of cores used	= 128		number of cores used	= 128	
				= 64	
			GPU acceleration activated	00 5144	
time (cpu & wall) for structure input	= 1.280000	1.284794	percentage of GPU accelerated flops	= 99.7144	
time (cpu & wall) for ordering	= 15.169800	15.169800	time (cpu & wall) for structure input	= 1.060000	
time (cpu & wall) for other matrix pres	6.890200	6.938609	time (cpu & wall) for ordering	= 14.095459	
time (cpu & wall) for value input	= 1.420000	1.429186	time (cpu & wall) for other matrix prep		
time (cpu & wall) for matrix distrib.	= 2.640000		time (cpu & wall) for value input	= 0.950000	
time (cpu & wall) for numeric factor	= 74.380000		time (cpu & wall) for matrix distrib.	= 3.340000	
computational rate (mflops) for factor		1098355.317452	time (cpu & wall) for numeric factor	= 35.900000	
time (cpu & wall) for numeric solve	= 0.850000		computational rate (mflops) for factor		
computational rate (mflops) for solve			time (cpu & wall) for numeric solve	= 0.730000	0.723194
	= 211871.780508		computational rate (mflops) for solve	= 64346.638293	64952.225467
effective 1/0 face (MB/Sec) for solve	- 2110/1./00500	209023.793035	effective I/O rate (MB/sec) for solve	= 245160.688215	247467.975314
Memory allocated on core 0 =	1587.147 MB				
Memory allocated on core 1 =	1482.573 MB		Memory allocated on core 0 =	2420.815 MB	
Memory allocated on core 1 =	1482.573 MB		Memory allocated on core 1 =	2283.246 MB	
	1401 005 005		•		
Memory allocated on core 126 =	1491.825 MB		Memory allocated on core 62 =	2758.796 MB	
Memory allocated on core 127 =	2185.482 MB		Memory allocated on core 63 =	3805.647 MB	
Total Memory allocated by all cores = 19	97172.640 MB		Total Memory allocated by all cores = 15	6488.815 MB	
DSP Matrix Solver CPU Time (sec) =			DSP Matrix Solver CPU Time (sec) =	62.870	
DSP Matrix Solver ELAPSED Time (sec) =			DSP Matrix Solver ELAPSED Time (sec) =		
DSP Matrix Solver Memory Used (MB) =	1587.147		DSP Matrix Solver Memory Used (MB) =		
			Dot Mattix Dotver Memory Obea (MD) -	2120.013	

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19 - 21. Juni 2013, Manufalian

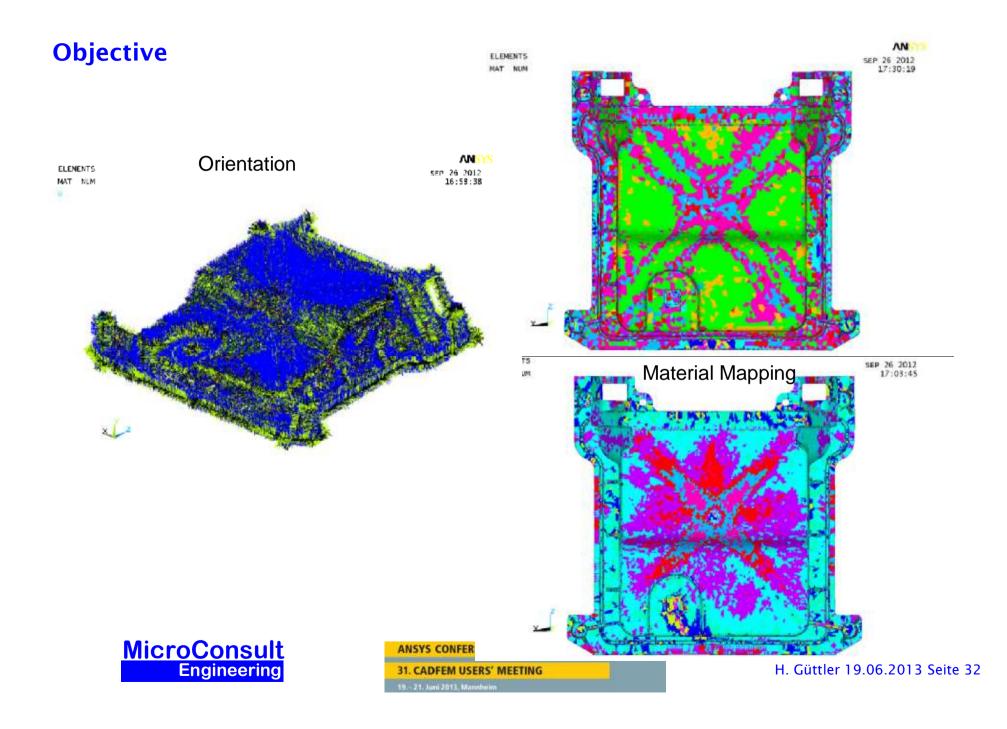
GPU Performance tested with mold injected part (w. fibers)

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 12. - 21. Juni 2013. Manufactors

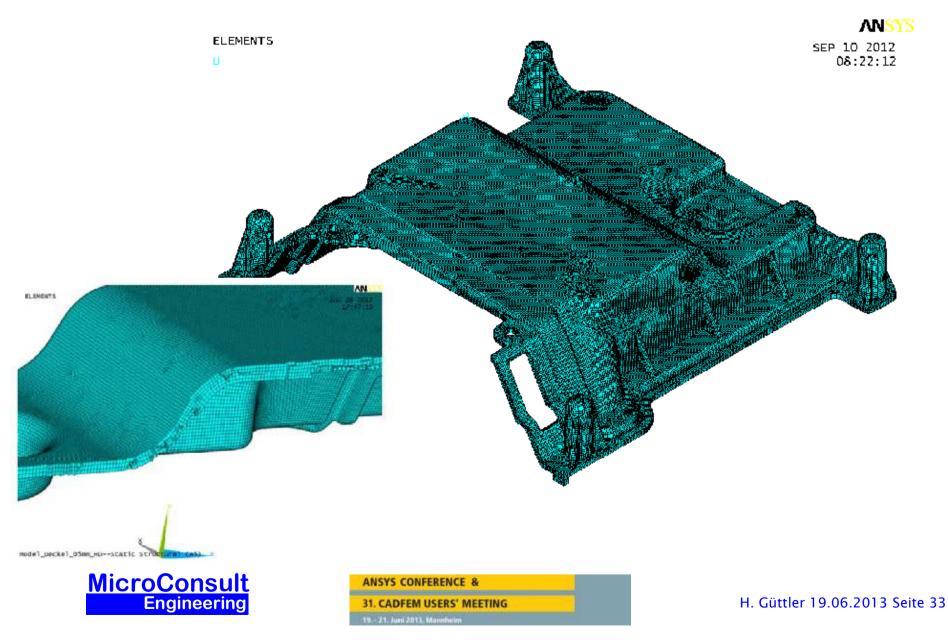
Objective

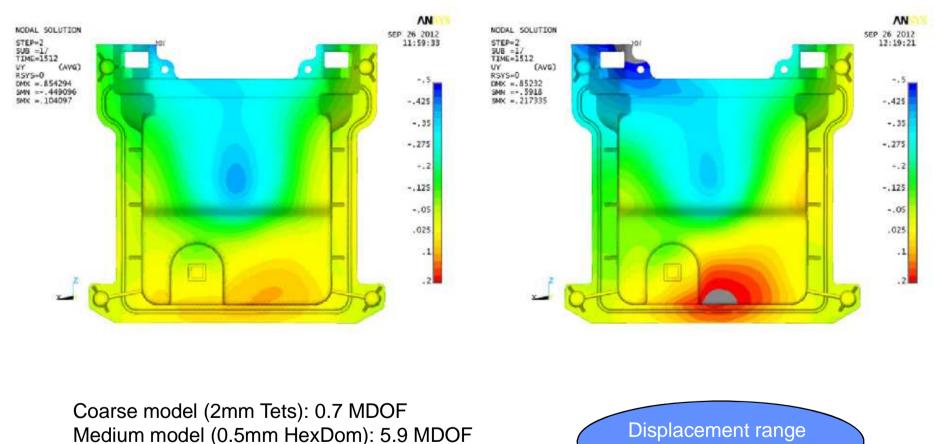
For a plastic cover generated via mold injection from a fiber reinforced plastic (PA66GF30) there is a considerable variation of the material properties caused by a variation in the direction of the fiber orientation. Furthermore, the degree of orientation will vary locally.

The fiber orientation can be calculated outside of ANSYS and mapped onto the model. However, a much finer mesh is needed to represent the locally varying material accurately, compared to the situation with a homogenous material.


During a customer project we made a study with models of different meshing density (meshed inside workbench) to investigate the displacements under thermal load

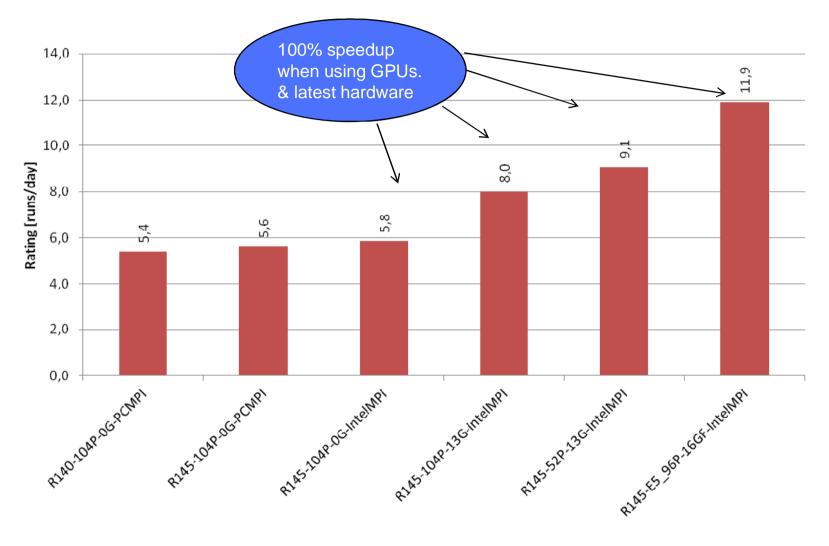
The model is a simple bulk model (solid 186), no contacts, no material nonlinearities.


Coarse model (2mm Tets): 0.7 MDOF Medium model (0.5mm HexDom): 5.9 MDOF



Model 0.5 mm Hex Dominant

Difference in Displacements (free expansion)


2mm Tet Mesh

0.5mm Hex Dom Mesh

MicroConsult Engineering

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19. - 21. Juni 2013. Manufacture off by about 50%

Results for 0.5mm HexDom model

MicroConsult Engineering

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 13. 21. Juni 2011. Manusheim

Conclusions

- ANSYS Mechanical routinely deliver TFLOP per second performance in a HPC environment!
 - Highest Peak performance with GPUs (and suitable case)
 - Conventional solution provides similar performance with fewer surprises.
 - GPU licensing & stability critical for adoption

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19. - 21. Juni 2013, Manufactory

Acknoweldgements

- · Jeff Beisheim, ANSYS Inc.
- Erke Wang, Peter Tiefenthaler, CADFEM GmbH
- · Natalja Schafet, Wolfgang Müller-Hirsch, Robert Bosch GmbH
- Philipp Schmid, Holger Mai, MicroConsult Engineering GmbH

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19. - 21. Juni 2013. Manufactor

SELECT THE RIGHT TESLA GPU

Features	Tesla K20X	Tesla K 20	Tesla K10	Tesla M2090	Tesla M2075
Number and Type of GPU	t Kepl	er GK110	2 Kepler GK104s	1 Fermi GPU	t Fermi GPU
GPU Computing Applications	Seismic processing, C computing, Computat Physics, Data analytic Weather modeling	ional chemistry and	Seismic processing, signal and image processing, video analytics	Seismic processing, Cl computing, Computati Physics, Data analytics Weather modeling	onal chemistry and
Peak double precision floating point performance	1.31 Hlops	1.17 I flops	190 Gigaflops (95 Gtlops per GPU)	665 Gigaflops	515 Gigaflops
Peak single precision floating point performance	3.95 Tflops	3.52 Tflops	4577 Gigaflops (2288 Gtlops per GPU)	1331 Gigaflops	1030 Gigaflops
Memory bandwidth (ECC off)	250 GB/sec	208 GB/sec	320 GB/sec (160 GB/sec per GPU)	177 GB/sec	150 GB/sec
Memory size (GDDR5)	6 GB	5 GB	8GB (4 GB per GPU)	6 GigaBytes	6 GigaBytes
CUDA cores	2688	2496	3072 (1536 per GPU)	512	448

ANSYS CONFERENCE & 31. CADFEM USERS' MEETING 19.-21. Juni 2013, Manufaction