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Cyclic Plasticity Modeling
with ANSYS Mechanical APDL

Abstract

Material modeling and simulation belong to the most exciting
areas of contemporary condensed matter physics. This paper is
the first in a series of concise yet thorough studies of the physical
principles and mathematical concepts underlying a few of the
phenomenological material models available in ANSYS Mechani-
cal APDL 12.0.

Assuming a basic background in continuum mechanics, this study
addresses aspects of cyclic plasticity (viscoplastic CHABocHE model),
anisotropic hyperelasticity (Kaliske's model), isotropic damage in
hyperelastic materials (OGDeN-RoxBURGH MuLLins-effect model), and
the nonlinear cyclic viscoelasticity of filled elastomers (BERGSTROM-
Bovce model).

Particular attention is given to practical, low-scale physical
mechanisms (micromechanisms) underlying the formulations of
these constitutive frameworks. In an effort to expand the appli-
cability of these material models to modern product design, a uni-
fied family of methods and tools for identification of associated
material parameters is presented.

The goal of this series of contributions is to illustrate, via carefully
crafted material benchmarks, how ANSYS Mechanical APDL can
easily perform quantitatively correct simulations of the nonlinear
mechanical response of many types of engineering materials.

Introduction

Constitutive equations characterizing material responses are
essential for any structural or mechanical calculation. The func-
tional form of these relations can vary, from linear in the case small-
strain elastic structural analyses (Hooke's law) to complex nonlinear
in the case of inelastic analysis of rate-dependent material responses
with hysteresis (cyclic plasticity).

This study considers only the conventional continuum (or pheno-
menological) approach to cyclic plasticity. This approach is equivalent
to averaging out the local structural effect of microstructural
heterogeneity in the stress and strain fields within a representa-
tive portion of the material (a periodic mesoscopic polycrystal),
and considering it only indirectly via the introduction of internal
variables. The micromechanical motivation underlying the selec-
tion and interpretation of these internal variables is also acknow-
ledged.

Constitutive modeling of cyclic plasticity and viscoplasticity has
developed markedly over the past three decades. On the basis of
the BesseLING's [1] multilayer model, Mroz [2] advanced his re-
nowned multisurface model, inspiring several other plasticity
formulations unified by the concept of bounding surfaces in the
stress space. [3]
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The nonlinear kinematic hardening rule on which the model out-
lined is based (Equation (6)) was originally proposed by ARMSTRONG
and FReDERICK in 1966 [4]. By combining, in a single mathematical
framework, creep and rate-independent plasticity, BobnEr and
ParToMm laid down the foundation of unified cyclic viscoplasticity
modeling in 1972.

Further constitutive theories based on the same concepts were
proposed in the mid-1970s through the early 1980s for the velocity-
(rate-) dependent plastic behavior of metal materials [5] [6].

The current state of the art in cyclic plasticity phenomenological
modeling involves either the multisurface conceptual view of Mroz
or treating cyclic plasticity from the unifying perspective advanced
by Bobner and ParToM. The most recent progress elaborates and
improves upon these modeling frameworks to simulate the physical
phenomenon of ratcheting strain accumulation (or simply rat-
cheting).

By ratcheting, the plastic deformation occurring during cyclic loa-
ding is typically not fully reversed after unloading, and this effect
is compounded during successive cycles. Depending on the circum-
stances, ratcheting may slow down and stop, continue at a constant
rate, or accelerate. If ratcheting slows down and stops, it is refer-
red to as plastic shakedown. A typical ratcheting effect is obser-
ved in clock mainsprings which, after a long period of use, relax
and no longer provide sufficient power to drive the clock
mechanism.

More detail is provided below concerning the capabilities of the
unified viscoplastic framework proposed by J.L. CHAaBOCHE and
available in ANSYS Mechanical 12.0 for simulating cyclic plastici-
ty with ratcheting.

This paper has the following structure:

e A brief review of cyclic plasticity micromechanics is presented.

e The essential features of the Chaboche viscoplastic model are

noted, with particular attention directed to the form of the

dynamic recovery function and the physical interpretation of the

back-stress multikinematic law.

The capabilities of the model are briefly illustrated, and cyclic

viscoplasticity simulation results for the AISI 316H specimen are

provided.

e A brief description is given of the curve-fitting tool developed
by CADFEM for estimating material parameters in the multi-
kinematic law.

Motivation
Besides the clock mainspring scenario, another classic case where
ratcheting strain accumulation can be observed is the nuclear re-
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Figure 1: Cyclic stress-strain curve

actor mantel. The typical nuclear reactor mantel is made of aus-
tenitic stainless steels and undergoes large variety of time-de-
pendent stress-strain histories during its service time. As a conse-
guence, three general response types emerge in the mantel on
the level of each of its material points:

¢ Incremental collapse
Characterized by an increase of the mean stress curve, up to
fracture.

e Low-cycle fatigue
Occurs with a constant mean stress.

e Flastic vibrations (also known as elastic shakedown)
Appears as a consequence of a corresponding decrease in am-
plitudes of plastic strain vibrations. The stress response of par-
ticular material point therefore enters the elastic region (that is,
the domain enclosed by the yield surface in the stress space),
while the plastic saturation displayed by universal flow-curve
diagrams (as shown in see Figure 3) indicates ratcheting.

Introduction to the micromechanics of cyclic deformation in
crystal grains and metallic polycrystals

Both deformation-induced dislocation activities in the crystal grains
of a polycrystal and the micromechanics of deformation share
certain similarities; however, the general nature of dislocation
activity in a crystal grain during cyclic deformation is different com-
pared to that occurring during a monotonic deformation process.

Thus far, it is known that the cyclic deformation at the grain level
is characterized by an approximately equal number of positive and
negative dislocations. As a result, no long-range internal stresses
develop and cyclic hardening is attributed to both the attractive
interactions and dislocation locking by dipole formations.

Grundlagen & Technologie

The dislocation dipoles arrange themselves into specific dissipa-
tive structures at low plastic shear strain amplitudes, as shown by
(A) in Figure 1. These structures are called dislocation veins.

A further increase of the number of cycles, results first in an increase
in the dislocation density within the veins, followed by increase in
the fraction of veins per unit volume of the deformed material.

In Stage B, the resolved shear stress at the cyclic saturation re-
mains almost constant — a plateau appears — when the plastic
strain amplitude is increased. The effect is attributed to the for-
mation of persistent slip bands (PSBs). Within PSBs, plastic defor-
mation is approximately 100 times higher than within the vein-
structured surroundings.

The plastic saturation state within the PSBs is determined by the
dynamic equilibrium between dislocation multiplications, and dis-
location annihilations. The latter effect yields to a generation of
vacancies, and therefore to an increase of the volume of persi-
stent slip bands and formation of protrusions on the surface of
the specimen.

The range C of plastic shear strain values further increases the sa-
turation of the shear stress amplitude and rearranges the dislo-
cation veins into labyrinth structures.

Perhaps the most representative manifestation of cyclic deforma-
tion in metals and alloys occurs next — the BAUSCHINGER effect, a
substantial decrease of the yield stress after cyclic load reversal.

Unified continuum representation of polycristal microme-
chanics: aspects of unified theory of cyclic viscoplasticity
Unified in the current context means that the theory of visco-
plasticity is constructed by the phenomenological combination of
rate-independent, nonlinear isotropic/kinematic hardening models
and viscoplastic models developed for monotonic loading cases.
To better understand the basic theory, assume linear kinematics
(that is, small strains) applied under cyclic loading conditions.
Beginning with the rate-independent variant of the theory, we
expand the complexity further to the viscoplastic case. The basic
equations governing the rate-independent plastic response of ma-
terial point are given in isothermal context with the system, as
follows:
e ¥
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Equation (1)
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The first equation is the additive decomposition of the total strain
tensor &~ into an elastic part =", and traceless plastic part =" .

The second equation is the generalized Hooke's law of linear ela-
sticity with C, the super-symmetric forth rank elasticity tensor.

The function f is the yield function enclosing the elastic vector

states |ar. I, X} . Here, #7 is the CAucHY stress, R is the stress-
like isotropic hardening variable, and X is the backstress tensor.
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The final expression is the flow rule, whose plastic multiplier iis
determined from the loading-unloading condition A4 1. In
case of viscoplastic behaviour (or rate-dependency), the frame-
work given in the Equation (1) is generalized via a viscoplastic
potential £t 1% (1. The stress state «T is allowed to move
outside the elasticity domain with positive values of f > 0; in this
way f can be interpreted as a scalar measure of the (viscous) ovr-

stress.

The flow rule therefore modifies to:

'y {7 _I. | e |_'|”_.I| - .'.-'lul -

Equation (2)

where & is replaced by the norm of the viscoplastic strain rate

|| . The derivative {Z, ris the viscosity function.

Equation (2) involves two essential choices:

* The choice of the viscosity function I r, or the equivalent
(but technically more involved) viscoplastic potential ¥, which
governs the evolution of (visco)plastic strain & .

e The choice of the hardening rule for internal stress-like
variables (R and X), characterizing the geometrical motion of
the yield surface.

The generic form of a hardening rule includes three terms:

e Strain hardening
The strain hardening term gives an (increasing) evolution of
typical stress-like hardening variable with the plastic strain rate.

e Dynamic recovery
The dynamic recovery term gives an instantaneous recall,
acting with the plastic strain.

e Static recovery
The static recovery term is usually independent of any plastic
strain, and represents certain thermally activated static reco-
very mechanism. This term expresses the effects of the ther-
mal agitation by dislocation multiplications as well as the effect
from dislocation annihilation on the level of the single-crystal
grain.

A more detailed discussion of the constitutive choices enforced by
the CHaBocHE model begins with the choice of the viscosity function.

The highly nonlinear relationship between the viscous overstress
and the plastic strain rate norm is approximated, within a large
range of equivalent plastic strain rates, by a NorToN type of power
function:

Equation (3)

where the familiar McCautey brackets designate that within the
elastic domain in the generalized stress space, there is no accu-
mulation of plastic strain (that is, g identically vanishes there).

The next class of equations concerns the second essential choice,
the evolution law for the isotropic hardening state (that is, the

evolution law for the size of the elastic domain).

Notice first that with Equation (1) (expression 3), Equation (3) can
be expressed as follows:
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Equation (4)

Equation (4) suggests three possibilities for introducing the isotro-
pic hardening:

e Through explicit expression for stress-like variable R

e By an increase of the viscosity parameter K

e By coupling p with the evolution law for X

In the first two cases, one needs to define the one-to-one rela-
tionship between R (or K) and the accumulated plastic strain p
(strain-hardening) or plastic work W (work-hardening). An example
of the evolution law for R is given in Equation (7) below.

Finally, the kinematic type of hardening is typical for moderate
strain applications. Its activation is motivated by either non-
proportional types of monotonic loading or cyclic loading (where
several load reversals are present).

Linear relationships, such as the PranDTL kinematic hardening rule,
provide a relatively bad quantitative account of this type of har-
dening response. A better description is given by the non-linear
model of ARMSTRONG and FReDERICK [4], which contains a dynamic
recovery term - X7, and is given by:

X=

[IE0 — X, Equation (5)

wil b

In this equation, C and = are two material parameters. The recall
term is co-linear with X and is proportional to ji. The evolution of
the back-stress tensor, is therefore exponential for piecewise smooth
monotonic uniaxial loading application and saturates at /= .

Further improvement of the predictions from this non-linear
kinematic hardening rule has been realized with a modification
proposed by CHABOCHE [6]. In essence, this modification consists
of an additive superposition of several models similar to Equation
(5), whose dynamic recovery constants differ by several orders of
magnitude, as shown

a

YOSk Y cow X

o

Equation (6)

Equation (6) expands the functionality of ARMSTRONG-FREDERICK mo-
del to larger strain ranges and provides better descriptions of the
soft transition between elasticity and the onset of plastic flow. The
parameters introduced by such superposition of backstresses are
interpreted as coefficients of a finite series representation of the
multikinematic hardening rule. This interpretation is also justified
in the context of the endochronic plasticity theory.

Example

Consider this example of the CHABOCHE viscoplastic constitutive
framework to predict the ratcheting in a rectangular block made
of AISI 316H austenitic stainless steel [7]. The boundary condi-
tions are shown in Figure 2. On one pair of sides, the steel block
is loaded by constant normal stress field, whereas four of the la-
teral sides undergo harmonically changing system of balanced



shear stresses. It is
experimentally ob-
served that such
temporal variation
of applied load in-
duces a progressive
but saturated in-
crease of the axial
strain co-linear with
the normal stress
components. The
strain rate is of the
order of 0.001 s™.
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Figure 2: Loading setup

For the simulation, the normal stress field is set to
«T = 245 MPa, while the harmonic shear stress is characterized
by + — vy=wlwl] with amplitude = 7% MPa and fre-
quency frequency «.r 115 rad/s.

The choice of loading parameters is consistent with the experi-
mental data set reported by Micunovic. [7] The particular form of
the CHaABOCHE viscoplastic model contains single-mode kinematic
hardening law and exponential isotropic hardening law,

=n e -"E T X
¥ = =i|: aF _ . X Equation (7)
It
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The results obtained from the numerical integration of this model
are shown in Figure 3.

Identification of material parameters for the non-linear
kinematic hardening part

The most challenging task when identifying material parameters
for (7) involves estimating nonlinear kinematic hardening constants
in the ARMSTRONG-FREDERICK rule.

On the basis of two-load reversal uniaxial stress-strain cycle,
CADFEM developed a curve-fitting tool to calibrate up to
five ARMSTRONG-FREDERICK kinematic models (with up to 12 mate-
rial constants including the yield stress and Young's modulus),
superimposed in the
- - - . form proposed by
o hPa CHABOCHE. The tool
is based on compu-
T tational minimiza-
tion of the least-
e square error bet-
ween predicted and
= measured uniaxial
240 stress values.

HIEE

)

From an algorithmic
perspective, the cur-
ve-fitting tool uses
the NELDER-MEAD sim-

Figure 3: Ratcheting strain accumulation observed in the so
square error with recalled universal flow curve (equivalent

stress vs. accumulated plastic strain). See also [7 (p. 197].
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Fig. 4: Graphical user interface of CHa- Figure 5: Graphical user interface of CFT with fit

BOCHE curve-fitting tool (CFT): shown are of uniaxial response data set..
the adjustment sliders for the material

integration solver and least-square

minimization algorithm, as well as data

import button.

plex method for estimating the derivatives from the least-square
error with respect to material constants. At each iteration step,
the method is combined at with an explicit integration strategy
for the uniaxial version of the nonlinear kinematic hardening model
(Equation (6)). Screenshots from a typical session with CFT are
shown in Figures 4 and 5.

The experimental data set necessary for estimating the material
parameters is provided in ASCII format. Finally, the curve-fitting
tool offers visual control of the quality of the fit, as well as auto-
matic generation of the APDL code segment for the CHABOCHE
nonlinear kinematic hardening model.

Dr. Slav Dimitrov, CADFEM GmbH Grafing
Tel. +49 (0) 80 92-70 05-40
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